Closing Today: 3.5(1)(2)

Closing Tues:

3.6-9

Closing *Thurs*:

3.9

Entry Task: (from an old final)

Find the derivative of

$$y = x^{\sin^{-1}(2x)}$$

$$\ln(y) = \sin^{-1}(2x) \ln(x)$$

$$\Rightarrow \frac{1}{2x} = \sin^{-1}(2x) \frac{1}{x} + \frac{1}{1-(2x)^{2}} \cdot 2 \ln(x)$$

$$\Rightarrow \frac{1}{2x} = y \left(\frac{\sin^{-1}(2x)}{x} + \frac{2\ln(x)}{1-4x^{2}} \right)$$

$$= x^{\sin^{-1}(2x)} \frac{1}{x} + \frac{2\ln(x)}{1-4x^{2}}$$

$$= x^{\sin^{-1}(2x)} \frac{1}{x} + \frac{2\ln(x)}{1-4x^{2}}$$

$$= x^{\sin^{-1}(2x)} \frac{1}{x} + \frac{2\ln(x)}{1-4x^{2}}$$

3.9: Related Rates

Motivation: In an application, it is common that the rate of change of one quantity is known. A **related rates** question asks for other rates in the application.

The key to these problems is to find general relationships between the quantities, then differentiating to find the relationship between the rates.

A Simple Example: Water is dripping on the ground forming a circular puddle. The area of the puddle is growing at a constant 20in²/min. At what rate is the radius increasing when the radius is 5 in?

Recipe for Related Rates:

- Draw a good picture.
 Label *everything*.
- 2. Identify what you know?
 Identify what you want?
- 3. Write equations relating the labels.
- Implicitly differentiate with respect to time t. (Treat all changing quantities as functions of t)
- Substitute in your values and solve.
 Do <u>NOT</u> substitute values in until the last step.

Tools to use (for *step 3*):

Area of circles, squares, triangles.

Volume of a cylinder, cone, sphere.

Surface area of a sphere.

Pythagorean Theorem.

Similar Triangles.

Trig. Definitions (Soh, Cah Toa).

(Note: If you don't have a right

triangle, make right triangles)

Trig. Identity (Cosine/Sine Laws).

Note: Once you have the general idea, these problems become routine and they are <u>all the same</u>. So don't think of each problem as different, recognize they are the same idea. Now we will do a bunch of examples.

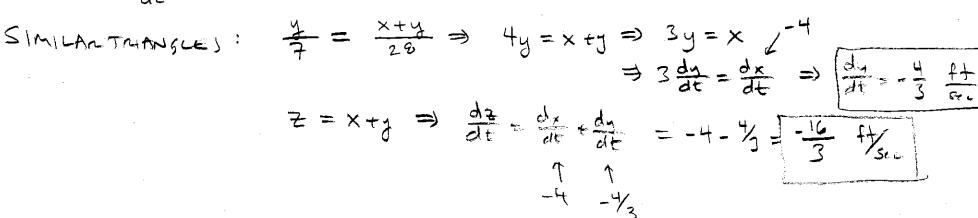
Example: (Like HW 3.9/1)

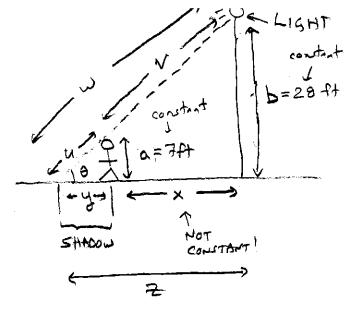
A man 7 ft tall is 20 ft from a 28-ft lamppost and is walking toward it at a rate of 4 ft/sec.

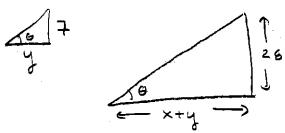
- How fast is his shadow shrinking at that moment?
- How fast is the tip of the shadow moving?

KNOW:
$$\frac{dx}{dt} = -4 \text{ then } x = 20 \text{ ft}$$

WANT: $\frac{dy}{dt} = \text{"How FAST SHADOW SHANNING"}$
 $\frac{d^2}{dt} = \text{"How FAST TIP OF THE SHADOW NOVING"}$







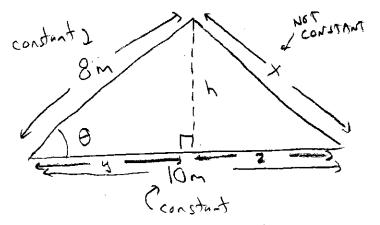
Example: (Like HW 3.6-9/11)

Two sides of a triangle are 8 m and 10 m in length and the angle between them is increasing at a rate of 0.06 rad/s.

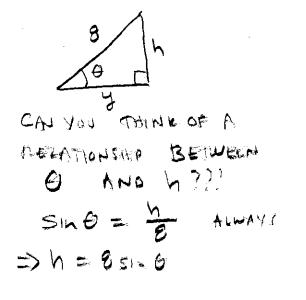
Find the rate at which the area of the triangle is increasing when the angle between the sides of fixed length is $\pi/3$ radians.

KNOW:
$$\frac{d\theta}{dt} = 0.06 \frac{RAD}{SEC}$$

WANT: $\frac{dA}{dt} = \frac{227}{SEC} \frac{m^2}{SEC}$ when $\theta = T/3$
 $A = \frac{1}{2}bh = \frac{1}{2}(10)h \Rightarrow A = 5h$
 $A = 5h$
 $A = 40sin(\theta)$
 $A = 40sin(\theta)$
 $A = 40cos(\theta)$
 $A = 70cos(\theta)$



Let A=A(t)= Area of the friends 0=6(t)= angle h=h(t)=height

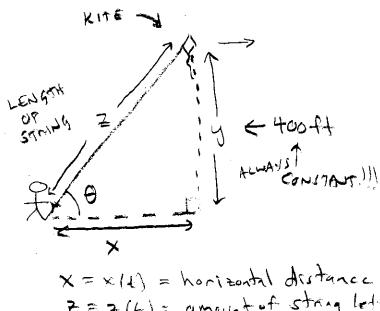


Example: (Like HW 3.9/3)

A kite in the air at an altitude of 400 ft is being blown horizontally at the rate of 10 ft/sec away from the person holding the kite string at ground level.

At what rate is the string being let out when 500 ft of string is already out?

$$\begin{array}{c} (x^{2} + 400^{2} = 2^{2}) \Rightarrow 2 \times \frac{dx}{dt} + 0 = 2 = \frac{dz}{dt} \\ (x) = 2 \times \frac{dx}{dt} = 2 \times \frac{dx}{dt} \\ (x) = 2 \times \frac{dx}{dt} \\ (x) = 2 \times \frac{dx}{dt} = 2 \times \frac{dx}{dt} \\ (x) = 2 \times \frac{dx}{dt} = 2 \times \frac{dx}{dt} \\ (x) = 2 \times \frac{dx}{dt} \\ (x) = 2 \times \frac{dx}{dt} = 2 \times \frac{dx}{dt} \\ (x) = 2 \times \frac{dx}{dt} = 2 \times \frac{dx}{dt} \\ (x) = 2 \times \frac{dx}{dt} = 2 \times \frac{dx}{dt} \\ (x) = 2 \times \frac{dx}{dt}$$



$$X = x(1) = horizontal distance
 $Z = z(1) = amount of string let
out$$$

$$300.10 = 500. \frac{d^2}{dt}$$

$$6 = \frac{d^2}{dt}$$

$$6 + \frac{d^2}{dt}$$

Example: (Like HW 3.9/2)

One bike is 4 miles east of an intersection, travelling toward the intersection at the rate of 9 mph.

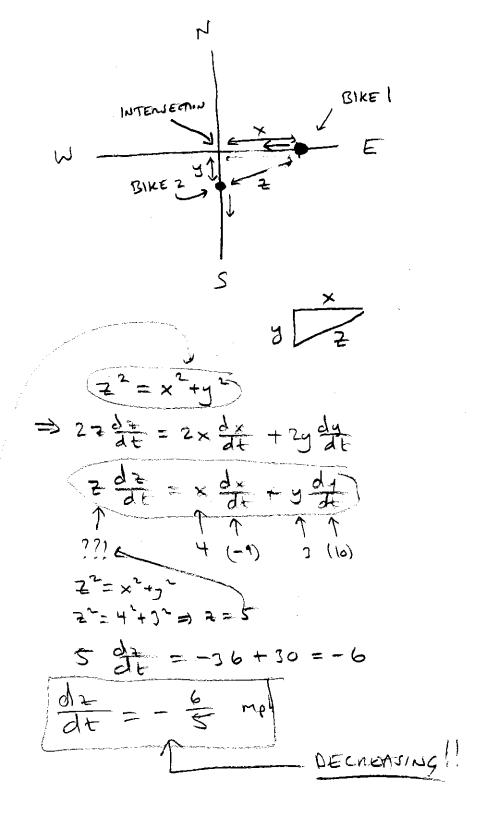
At the same time, a 2nd bike is 3 miles south of the intersection and is travelling away from the intersection at a rate of 10 mph.

- At what rate is the distance between them changing?
- Is this distance increasing or decreasing?

KNOW:
$$\frac{dx}{dt} = -9$$
 WHEN $x = 4$

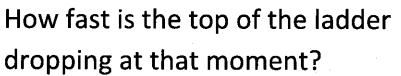
$$\frac{dy}{dt} = 10$$
 WHEN $y = 3$

$$\frac{dz}{dt} = 222$$
 WHEN $x = 4, y = 3$



Example: (Like 3.6-9/13, 3.9/9)

A 13-foot ladder is leaning against a wall and its base is slipping away from the wall at a rate of 3 ft/sec when it is 5 ft from the wall.



$$\frac{\text{KNow}}{\text{MANT}}: \frac{dx}{dt} = 3 \quad \text{when} \quad x = 5$$

$$\frac{dx}{dt} = 3 \quad \text{when} \quad x = 5$$

Example: (Like 3.9/6)

A lighthouse is located on a small island 2 km away from the nearest point *P* on a straight shoreline and its light makes three revolutions per minute.

How fast is the beam of light moving along the shoreline when it is 1 km from *P*?

KNOW:
$$\frac{d\theta}{dt} = \frac{3 \text{ REV}}{\text{min}} = \frac{6\pi \text{ RAD}}{\text{min}}$$

WANT: $\frac{dx}{dt} = \frac{72}{2}$

WHEN $x = 1 \text{ kn}$
 $\frac{dx}{dt} = \frac{72}{2}$
 $\frac{dx}{dt} = \frac{72}{2}$
 $\frac{dx}{dt} = \frac{72}{2}$
 $\frac{dx}{dt} = 2 \sec^2 \theta \frac{d\theta}{dt}$
 $\frac{dx}{dt} = 2 \sec^2 \theta \frac{d\theta}{dt}$

